Exam. Code : 103204 Subject Code : 1121

B.A./B.Sc. $4^{\text {th }}$ Semester
MATHEMATICS

Paper-II

(Solid Geometry)

Time Allowed-Three Hours] [Maximum Marks-50

Note :- Answer any five questions, selecting at least two questions from each section.

SECTION-A

1. (a) Show that the equation of the cone whose vertex is the origin and whose base is the circle through the three points $(a, 0,0),(0, b, 0),(0,0, c)$ is $\Sigma a\left(b^{2}+c^{2}\right) y z=0$. 5
(b) Find the equation of the right circular cone generated by straight line drawn from origin to cut the circle through the points $(1,2,2),(2,1,-2)$, ($2,-2,1$).
2. (a) Find the equation of the elliptic cone whose vertex is origin and which intersects the ellipse $\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1, \mathrm{z}=\mathrm{c}$.
(b) Prove that the equation $x^{2}-2 y^{2}+3 z^{2}-4 x y+$ $5 y z-6 z x+8 x-19 y-2 z-20=0$ represents a cone, find its vertex.
3. (a) If $x=\frac{1}{2}, y=z$ represents one of a set of three mutually perpendicular generators of the cone $11 y z+6 z x-14 x y=0$, find the equation of other two.
(b) Find the angle between the lines given by $x+y+z=0$ and $\frac{y z}{q-r}+\frac{z x}{r-p}+\frac{x y}{p-q}=0$.
4. (a) Find the equation of the cylinder whose generators are parallel to the the $\frac{x}{1}=\frac{y}{-2}=\frac{z}{3}$ and whose guiding curve is the ellipse $x^{2}+2 y^{2}=1, z=0$. 5
(b) Find the equation of the right circular cylinder whose guiding circle is

$$
\begin{align*}
& x^{2}+y^{2}+z^{2}-2 x+4 y-6 z-2=0 \\
& 2 x+3 y+6 z=0 \tag{5}
\end{align*}
$$

5. (a) Find the equation of the enveloping cylinder of the sphere $x^{2}+y^{2}+z^{2}-2 x+4 y=1$ having its generators parallel to the line $\mathrm{x}=\mathrm{y}=\mathrm{z}$. 5

2666(2517)/STB-16937

a2zpapers.com

(b) Prove that the plane $a x+b y+c z=0$ cuts the cone $y z+z x+x y=0$ in perpendicular lines if

$$
\begin{equation*}
\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0 \tag{5}
\end{equation*}
$$

SECTION-B

6. (a) Find the equation of the surface generated by revolution of the circle $x^{2}+y^{2}-2 a y+a^{2}-r^{2}=0$, $z=0$ about the x-axis $(a>r)$.
(b) Identify the surface

$$
\begin{equation*}
4 x^{2}+9 y^{2}+z^{2}-6 x+6 y-4 z+10=0 \tag{5}
\end{equation*}
$$

7. Reduce the equation

$$
3 x^{2}+7 y^{2}+3 z^{2}+10 y z-2 x x+10 x y+4 x-12 y-4 z+1=0
$$ to the standard form and state the nature of the surface represented by it.

8. (a) A tangent plane to ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ meets the co-ordinates axes in L, M, N. Prove that the centroid of the triangle LMN lies on
$\frac{a^{2}}{x^{2}}+\frac{b^{2}}{y^{2}}+\frac{c^{2}}{z^{2}}=9$.
(b) The normal at any point P of the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ meet the principal planes in G_{1}, G_{2}, G_{3}. Show that $P G_{1}: P G_{2}: P G_{3}=a^{2}: b^{2}: c^{2}$.
9. (a) Find the locus of points from which three mutually perpendicular tangent lines can be drawn to the conicoid $\mathrm{ax}^{2}+\mathrm{by}^{2}+\mathrm{cz}^{2}=1 . \quad 5$
(b) Show that if the origin is the centre of a conicoid, the coefficients of the first degree terms in its equation are all zero.
10. Prove that the normal from (α, β, γ) to paraboloid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=2 z$ lie on the cone

$$
\begin{equation*}
\frac{\alpha}{x-\alpha}-\frac{\beta}{y-\beta}+\frac{a^{2}-b^{2}}{z-\gamma}=0 \tag{10}
\end{equation*}
$$

